::p_load(tidyverse,
pacman
margins,
prediction,
modelsummary,
summarytools,
gt)::p_load_gh("JaehyunSong/BalanceR")
pacman<- read_csv("data/replication_data_aiso_2022.csv") df
A Replication Code for “Fake News and its Electoral Consequences: A Survey Experiment on Mexico”
1 Text and Dataset
2 Setup
3 Estimation
# w/o covariates / no interaction
<- lm(Regret ~ Group, data = df, weights = W)
Fit1
# w/ covariates
<- lm(Regret ~ Group + Female + Age + Educ + Income +
Fit2 + PID1 + PID2 + PID3 + Knowledge + Voted +
Ideology + IntEffi + Trust_Media,
ExtEffi data = df, weights = W)
# w/ covariates / interaction with knowledge
<- lm(Regret ~ Group * Knowledge + Female + Age + Educ + Income +
Fit3 + PID1 + PID2 + PID3 + Knowledge + Voted +
Ideology + ExtEffi + IntEffi,
Trust_Media data = df, weights = W)
# w/ covariates / interaction with internal political efficacy
<- lm(Regret ~ Group * IntEffi + Female + Age + Educ + Income +
Fit4 + PID1 + PID2 + PID3 + Knowledge + Voted +
Ideology + IntEffi + Trust_Media,
ExtEffi data = df, weights = W)
<- c("GroupTreat1" = "Treatment 1",
coef_vec "GroupTreat2" = "Treatment 2",
"Female" = "Female",
"Age" = "Age",
"Educ" = "Education",
"Income" = "Income",
"Ideology" = "Ideology",
"PID1" = "PID: Anaya Coalition",
"PID2" = "PID: Meade Coalition",
"PID3" = "PID: López Obrador Coalition",
"Knowledge" = "Knowledge",
"Voted" = "Voted",
"ExtEffi" = "External Efficacy",
"IntEffi" = "Internal Efficacy",
"Trust_Media" = "Trust in Media",
"GroupTreat1:Knowledge" = "Treatment 1 * Knowledge",
"GroupTreat2:Knowledge" = "Treatment 2 * Knowledge",
"GroupTreat1:IntEffi" = "Treatment1 * Internal Efficacy",
"GroupTreat2:IntEffi" = "Treatment2 * Internal Efficacy",
"(Intercept)" = "Constant")
modelsummary(list("Model 1<br/>No Covariates" = Fit1,
"Model 2<br/>With Covariates" = Fit2,
"Model 3<br/>Knowledge" = Fit3,
"Model 4<br/>Internal Political Efficacy" = Fit4),
escape = FALSE,
coef_map = coef_vec)
Model 1 No Covariates |
Model 2 With Covariates |
Model 3 Knowledge |
Model 4 Internal Political Efficacy |
|
---|---|---|---|---|
Treatment 1 | -0.021 | -0.016 | -0.006 | 0.267 |
(0.035) | (0.033) | (0.054) | (0.116) | |
Treatment 2 | -0.045 | -0.027 | 0.070 | 0.363 |
(0.034) | (0.032) | (0.052) | (0.118) | |
Female | 0.004 | 0.007 | 0.005 | |
(0.027) | (0.027) | (0.026) | ||
Age | -0.001 | -0.001 | -0.001 | |
(0.001) | (0.001) | (0.001) | ||
Education | 0.006 | 0.003 | 0.004 | |
(0.014) | (0.014) | (0.014) | ||
Income | 0.000 | 0.001 | 0.001 | |
(0.003) | (0.003) | (0.003) | ||
Ideology | 0.014 | 0.014 | 0.014 | |
(0.006) | (0.006) | (0.006) | ||
PID: Anaya Coalition | 0.240 | 0.231 | 0.235 | |
(0.049) | (0.049) | (0.049) | ||
PID: Meade Coalition | 0.122 | 0.116 | 0.117 | |
(0.052) | (0.052) | (0.051) | ||
PID: López Obrador Coalition | 0.031 | 0.026 | 0.032 | |
(0.033) | (0.033) | (0.032) | ||
Knowledge | 0.020 | 0.049 | 0.020 | |
(0.014) | (0.022) | (0.014) | ||
Voted | -0.391 | -0.391 | -0.397 | |
(0.040) | (0.040) | (0.040) | ||
External Efficacy | 0.001 | 0.001 | -0.002 | |
(0.012) | (0.012) | (0.012) | ||
Internal Efficacy | -0.015 | -0.016 | 0.047 | |
(0.013) | (0.013) | (0.022) | ||
Trust in Media | 0.022 | 0.022 | 0.022 | |
(0.012) | (0.012) | (0.012) | ||
Treatment 1 * Knowledge | -0.008 | |||
(0.033) | ||||
Treatment 2 * Knowledge | -0.073 | |||
(0.031) | ||||
Treatment1 * Internal Efficacy | -0.069 | |||
(0.028) | ||||
Treatment2 * Internal Efficacy | -0.095 | |||
(0.028) | ||||
Constant | 0.230 | 0.410 | 0.388 | 0.180 |
(0.024) | (0.095) | (0.097) | (0.117) | |
Num.Obs. | 822 | 822 | 822 | 822 |
R2 | 0.002 | 0.168 | 0.175 | 0.181 |
R2 Adj. | 0.000 | 0.153 | 0.157 | 0.163 |
AIC | 888.7 | 765.1 | 762.7 | 756.8 |
BIC | 907.5 | 845.2 | 852.2 | 846.3 |
Log.Lik. | -440.342 | -365.569 | -362.332 | -359.386 |
F | 0.857 | 10.856 | 10.005 | 10.417 |
RMSE | 0.40 | 0.37 | 0.37 | 0.37 |
4 Figure 1
bind_rows(list("1" = prediction(Fit1,
at = list(Group = c("Control",
"Treat1",
"Treat2"))) |>
summary(),
"2" = prediction(Fit2,
at = list(Group = c("Control",
"Treat1",
"Treat2"))) |>
summary()),
.id = "Model") |>
rename("Group" = "at(Group)") |>
mutate(Model = if_else(Model == "1",
"w/o Covariates\n& w/ Weights",
"w/ Covariates\n& w/ Weights"),
Model = fct_inorder(Model)) |>
ggplot() +
geom_bar(aes(x = Group, y = Prediction), stat = "identity") +
geom_label(aes(x = Group, y = Prediction,
label = sprintf("%.3f", Prediction))) +
coord_cartesian(ylim = c(0, 0.25)) +
labs(x = "Groups", y = "Predicted Pr(Regret)") +
facet_wrap(~Model, ncol = 2) +
theme_bw(base_size = 12)
5 Figure 2
|>
Fit3 prediction(at = list("Group" = c("Control", "Treat1", "Treat2"),
"Knowledge" = 0:3)) |>
summary() |>
rename("Group" = "at(Group)",
"Knowledge" = "at(Knowledge)") |>
mutate(Group = fct_inorder(Group)) |>
ggplot(aes(x = Knowledge, y = Prediction)) +
geom_line() +
geom_pointrange(aes(ymin = lower, ymax = upper)) +
labs(x = "(Low) ← Political Knowledge → (High)",
y = "Probability that respondents want \nto vote for another candidate (0:No ~ 1:Yes)") +
coord_cartesian(ylim = c(0, 0.4)) +
facet_wrap(~ Group) +
theme_bw()
6 Figure 3
|>
Fit3 margins(variable = "Group",
at = list(Knowledge = 0:3)) |>
summary() |>
mutate(Sig = if_else(p < 0.05, "Significant", "Insignificant"),
factor = if_else(factor == "GroupTreat1",
"Treatment 1", "Treatment 2")) |>
ggplot() +
geom_hline(yintercept = 0) +
geom_pointrange(aes(x = Knowledge, y = AME, ymin = lower, ymax = upper,
color = Sig)) +
scale_y_continuous(breaks = c(-0.3, -0.2, -0.1, 0, 0.1, 0.2),
labels = c(-0.3, -0.2, -0.1, 0, 0.1, 0.2)) +
scale_color_manual(values = c("Significant" = "black",
"Insignificant" = "gray70")) +
coord_cartesian(ylim = c(-0.3, 0.2)) +
labs(x = "(Low) ← Political Knowledge → (High)",
y = "Average Marginal Effects",
color = "") +
facet_wrap(~factor, ncol = 2) +
theme_bw() +
theme(legend.position = "bottom")
7 Figure 4
|>
Fit4 prediction(at = list("Group" = c("Control", "Treat1", "Treat2"),
"IntEffi" = 1:5)) |>
summary() |>
rename("Group" = "at(Group)",
"IntEffi" = "at(IntEffi)") |>
mutate(Group = fct_inorder(Group)) |>
ggplot(aes(x = IntEffi, y = Prediction)) +
geom_line() +
geom_pointrange(aes(ymin = lower, ymax = upper)) +
labs(x = "(Low) ← Internal Political Efficacy → (High)",
y = "Probability that respondents want \nto vote for another candidate (0:No ~ 1:Yes)") +
coord_cartesian(ylim = c(-0.1, 0.5)) +
facet_wrap(~ Group) +
theme_bw()
8 Figure 5
|>
Fit4 margins(variable = "Group",
at = list(IntEffi = 1:5)) |>
summary() |>
mutate(Sig = if_else(p < 0.05, "Significant", "Insignificant"),
factor = if_else(factor == "GroupTreat1",
"Treatment 1", "Treatment 2")) |>
ggplot() +
geom_hline(yintercept = 0) +
geom_pointrange(aes(x = IntEffi, y = AME, ymin = lower, ymax = upper,
color = Sig)) +
scale_y_continuous(breaks = c(-0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5),
labels = c(-0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5)) +
scale_color_manual(values = c("Significant" = "black",
"Insignificant" = "gray70")) +
coord_cartesian(ylim = c(-0.2, 0.5)) +
labs(x = "(Low) ← Internal Political Efficacy → (High)",
y = "Average Marginal Effects",
color = "") +
facet_wrap(~factor, ncol = 2) +
theme_bw() +
theme(legend.position = "bottom")
9 Appendix
9.1 Figure A.1
<- df |>
BlcChk select(-PID) |>
BalanceR(group = Group,
cov = c(Female:Voted,
`PID_PAN_PRD_MC` = PID1,
`PID_PRI_PVEM_PNA` = PID2,
`PID_MORENA_PT_PES` = PID3,
`PID_Etc` = PID0,
`External_Efficacy` = ExtEffi,
`Internal_Efficacy` = IntEffi,
`Trust_in_Media` = Trust_Media))
|>
BlcChk plot(vline = 25, simplify = TRUE, abs = TRUE)
9.2 Table A.2
<- df |>
tab_a2_1 select(Regret, Female, Age, Educ, Income, Ideology, PID0:PID3,
|>
Knowledge, Voted, ExtEffi, IntEffi, Trust_Media) summarise(across(Regret:Trust_Media,
.fns = list("Mean" = mean,
"SD" = sd),
.names = "{.col}-{.fn}")) |>
pivot_longer(cols = everything(),
names_to = "x",
values_to = "y") |>
separate(col = x, into = c("Cov", "Stat"), sep = "-") |>
pivot_wider(names_from = Stat, values_from = y) |>
mutate(Stat = paste0(sprintf("%.3f", Mean),
"<br/>(", sprintf("%.3f", SD), ")")) |>
select(-Mean, -SD)
<- df |>
tab_a2_2 select(Group, Regret, Female, Age, Educ, Income, Ideology, PID0:PID3,
|>
Knowledge, Voted, ExtEffi, IntEffi, Trust_Media) group_by(Group) |>
summarise(across(Regret:Trust_Media,
.fns = list("Mean" = mean,
"SD" = sd),
.names = "{.col}-{.fn}"),
.groups = "drop") |>
pivot_longer(cols = -Group,
names_to = "x",
values_to = "y") |>
separate(col = x, into = c("Cov", "Stat"), sep = "-") |>
pivot_wider(names_from = Stat, values_from = y) |>
mutate(Stat = paste0(sprintf("%.3f", Mean),
"<br/>(", sprintf("%.3f", SD), ")")) |>
select(-Mean, -SD) |>
pivot_wider(names_from = Group, values_from = Stat)
left_join(tab_a2_1, tab_a2_2, by = "Cov") |>
mutate(Cov = recode(Cov,
"Regret" = "Regret (Outcome)",
"Educ" = "Education",
"PID0" = "PID: Others",
"PID1" = "PID: Anaya Coalition",
"PID2" = "PID: Meade Coalition",
"PID3" = "PID: López Obrador Coalition",
"ExtEffi" = "External Efficacy",
"IntEffi" = "Internal Efficacy",
"Trust_Media" = "Trust in Media")) |>
select("Variables" = Cov,
"Entire Sample" = Stat,
"Treatment 1" = Treat1,
"Treatment 2" = Treat2,
"Control" = Control) |>
gt() |>
fmt_markdown(columns = -Variables) |>
cols_align(columns = -Variables, align = "center")
Variables | Entire Sample | Treatment 1 | Treatment 2 | Control |
---|---|---|---|---|
Regret (Outcome) | 0.206 |
0.203 |
0.189 |
0.224 |
Female | 0.451 |
0.414 |
0.471 |
0.465 |
Age | 38.995 |
40.520 |
39.136 |
37.493 |
Education | 4.606 |
4.645 |
4.604 |
4.573 |
Income | 9.428 |
9.629 |
9.450 |
9.227 |
Ideology | 5.414 |
5.484 |
5.404 |
5.360 |
PID: Others | 0.505 |
0.520 |
0.500 |
0.497 |
PID: Anaya Coalition | 0.084 |
0.090 |
0.079 |
0.084 |
PID: Meade Coalition | 0.080 |
0.062 |
0.096 |
0.080 |
PID: López Obrador Coalition | 0.331 |
0.328 |
0.325 |
0.339 |
Knowledge | 1.337 |
1.352 |
1.336 |
1.325 |
Voted | 0.865 |
0.867 |
0.875 |
0.853 |
External Efficacy | 3.758 |
3.660 |
3.800 |
3.804 |
Internal Efficacy | 4.022 |
3.891 |
4.043 |
4.119 |
Trust in Media | 2.954 |
3.023 |
2.943 |
2.902 |
9.3 Table A.4
# w/ covariates / interaction with trust in media
<- lm(Regret ~ Group * Trust_Media + Female + Age + Educ + Income +
Fit5 + PID1 + PID2 + PID3 + Knowledge + Voted +
Ideology + ExtEffi + IntEffi,
Trust_Media data = df, weights = W)
# w/ covariates / interaction with ideology
<- lm(Regret ~ Group * Ideology + Female + Age + Educ + Income +
Fit6 + PID1 + PID2 + PID3 + Knowledge + Voted +
Ideology + IntEffi + Trust_Media,
ExtEffi data = df, weights = W)
# w/ covariates / interaction with strength of idelogy
<- df |>
Fit7 mutate(Strength = abs(5 - Ideology)) |>
lm(Regret ~ Group * Strength + Female + Age + Educ + Income +
+ PID1 + PID2 + PID3 + Knowledge + Voted +
Ideology + IntEffi + Trust_Media,
ExtEffi data = _, weights = W)
<- c("GroupTreat1" = "Treatment 1",
coef_vec "GroupTreat2" = "Treatment 2",
"Female" = "Female",
"Age" = "Age",
"Educ" = "Education",
"Income" = "Income",
"Ideology" = "Ideology",
"Strength" = "Strength of Ideology",
"PID1" = "PID: Anaya Coalition",
"PID2" = "PID: Meade Coalition",
"PID3" = "PID: López Obrador Coalition",
"Knowledge" = "Knowledge",
"Voted" = "Voted",
"ExtEffi" = "External Efficacy",
"IntEffi" = "Internal Efficacy",
"Trust_Media" = "Trust in Media",
"GroupTreat1:Knowledge" =
"Treatment 1 *<br/>Knowledge",
"GroupTreat2:Knowledge" =
"Treatment 2 *<br/>Knowledge",
"GroupTreat1:IntEffi" =
"Treatment1 *<br/>Internal Efficacy",
"GroupTreat2:IntEffi" =
"Treatment2 *<br/>Internal Efficacy",
"GroupTreat1:Trust_Media" =
"Treatment1 *<br/>Trust in the Media",
"GroupTreat2:Trust_Media" =
"Treatment2 *<br/>Trust in the Media",
"GroupTreat1:Ideology" =
"Treatment1 *<br/>Ideology",
"GroupTreat2:Ideology" =
"Treatment2 *<br/>Ideology",
"GroupTreat1:Strength" =
"Treatment1 *<br/>Strength of Ideology",
"GroupTreat2:Strength" =
"Treatment2 *<br/>Strength of Ideology",
"(Intercept)" = "Constant")
modelsummary(list("Model 1<br/>No Covariates" = Fit1,
"Model 2<br/>With Covariates" = Fit2,
"Model 3<br/>Knowledge" = Fit3,
"Model 4<br/>Internal Political Efficacy" = Fit4,
"Model 5<br/>Trust in Media" = Fit5,
"Model 6<br/>Ideology" = Fit6,
"Model 7<br/>Strength of Ideology" = Fit7),
escape = FALSE,
coef_map = coef_vec)
Model 1 No Covariates |
Model 2 With Covariates |
Model 3 Knowledge |
Model 4 Internal Political Efficacy |
Model 5 Trust in Media |
Model 6 Ideology |
Model 7 Strength of Ideology |
|
---|---|---|---|---|---|---|---|
Treatment 1 | -0.021 | -0.016 | -0.006 | 0.267 | -0.145 | -0.101 | -0.050 |
(0.035) | (0.033) | (0.054) | (0.116) | (0.089) | (0.082) | (0.047) | |
Treatment 2 | -0.045 | -0.027 | 0.070 | 0.363 | -0.117 | -0.071 | -0.035 |
(0.034) | (0.032) | (0.052) | (0.118) | (0.082) | (0.077) | (0.046) | |
Female | 0.004 | 0.007 | 0.005 | 0.005 | 0.005 | 0.005 | |
(0.027) | (0.027) | (0.026) | (0.027) | (0.027) | (0.027) | ||
Age | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | ||
Education | 0.006 | 0.003 | 0.004 | 0.006 | 0.005 | 0.005 | |
(0.014) | (0.014) | (0.014) | (0.014) | (0.014) | (0.014) | ||
Income | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | |
(0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | ||
Ideology | 0.014 | 0.014 | 0.014 | 0.014 | 0.007 | 0.014 | |
(0.006) | (0.006) | (0.006) | (0.006) | (0.010) | (0.006) | ||
Strength of Ideology | -0.009 | ||||||
(0.014) | |||||||
PID: Anaya Coalition | 0.240 | 0.231 | 0.235 | 0.239 | 0.239 | 0.240 | |
(0.049) | (0.049) | (0.049) | (0.049) | (0.049) | (0.049) | ||
PID: Meade Coalition | 0.122 | 0.116 | 0.117 | 0.123 | 0.122 | 0.122 | |
(0.052) | (0.052) | (0.051) | (0.052) | (0.052) | (0.052) | ||
PID: López Obrador Coalition | 0.031 | 0.026 | 0.032 | 0.031 | 0.032 | 0.032 | |
(0.033) | (0.033) | (0.032) | (0.033) | (0.033) | (0.033) | ||
Knowledge | 0.020 | 0.049 | 0.020 | 0.020 | 0.020 | 0.020 | |
(0.014) | (0.022) | (0.014) | (0.014) | (0.014) | (0.014) | ||
Voted | -0.391 | -0.391 | -0.397 | -0.390 | -0.392 | -0.392 | |
(0.040) | (0.040) | (0.040) | (0.040) | (0.040) | (0.040) | ||
External Efficacy | 0.001 | 0.001 | -0.002 | 0.002 | 0.002 | 0.001 | |
(0.012) | (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | ||
Internal Efficacy | -0.015 | -0.016 | 0.047 | -0.015 | -0.014 | -0.014 | |
(0.013) | (0.013) | (0.022) | (0.013) | (0.013) | (0.013) | ||
Trust in Media | 0.022 | 0.022 | 0.022 | -0.003 | 0.022 | 0.022 | |
(0.012) | (0.012) | (0.012) | (0.019) | (0.012) | (0.012) | ||
Treatment 1 * Knowledge |
-0.008 | ||||||
(0.033) | |||||||
Treatment 2 * Knowledge |
-0.073 | ||||||
(0.031) | |||||||
Treatment1 * Internal Efficacy |
-0.069 | ||||||
(0.028) | |||||||
Treatment2 * Internal Efficacy |
-0.095 | ||||||
(0.028) | |||||||
Treatment1 * Trust in the Media |
0.043 | ||||||
(0.028) | |||||||
Treatment2 * Trust in the Media |
0.031 | ||||||
(0.026) | |||||||
Treatment1 * Ideology |
0.016 | ||||||
(0.014) | |||||||
Treatment2 * Ideology |
0.008 | ||||||
(0.013) | |||||||
Treatment1 * Strength of Ideology |
0.020 | ||||||
(0.019) | |||||||
Treatment2 * Strength of Ideology |
0.004 | ||||||
(0.019) | |||||||
Constant | 0.230 | 0.410 | 0.388 | 0.180 | 0.477 | 0.448 | 0.426 |
(0.024) | (0.095) | (0.097) | (0.117) | (0.104) | (0.102) | (0.097) | |
Num.Obs. | 822 | 822 | 822 | 822 | 822 | 822 | 822 |
R2 | 0.002 | 0.168 | 0.175 | 0.181 | 0.171 | 0.169 | 0.169 |
R2 Adj. | 0.000 | 0.153 | 0.157 | 0.163 | 0.153 | 0.152 | 0.151 |
AIC | 888.7 | 765.1 | 762.7 | 756.8 | 766.4 | 767.8 | 769.9 |
BIC | 907.5 | 845.2 | 852.2 | 846.3 | 855.9 | 857.4 | 864.2 |
Log.Lik. | -440.342 | -365.569 | -362.332 | -359.386 | -364.210 | -364.916 | -364.973 |
F | 0.857 | 10.856 | 10.005 | 10.417 | 9.744 | 9.646 | 9.091 |
RMSE | 0.40 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
10 Session Infomation
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Asia/Tokyo
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] BalanceR_0.8.0 gt_0.10.1 summarytools_1.0.1 modelsummary_2.1.0
[5] prediction_0.3.18 margins_0.3.27 lubridate_1.9.3 forcats_1.0.0
[9] stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2 readr_2.1.5
[13] tidyr_1.3.1 tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0
loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 farver_2.1.2 fastmap_1.2.0 pacman_0.5.1
[5] bayestestR_0.13.2 digest_0.6.35 timechange_0.3.0 lifecycle_1.0.4
[9] magrittr_2.0.3 compiler_4.4.0 rlang_1.1.3 sass_0.4.9
[13] tools_4.4.0 utf8_1.2.4 yaml_2.3.8 data.table_1.15.4
[17] knitr_1.46 labeling_0.4.3 htmlwidgets_1.6.4 bit_4.0.5
[21] plyr_1.8.9 xml2_1.3.6 tinytable_0.3.0 withr_3.0.0
[25] grid_4.4.0 datawizard_0.10.0 fansi_1.0.6 colorspace_2.1-0
[29] scales_1.3.0 MASS_7.3-60.2 insight_0.19.11 cli_3.6.2
[33] rmarkdown_2.27 crayon_1.5.2 ragg_1.3.2 generics_0.1.3
[37] rstudioapi_0.16.0 performance_0.11.0 reshape2_1.4.4 tzdb_0.4.0
[41] commonmark_1.9.1 parameters_0.21.7 pander_0.6.5 parallel_4.4.0
[45] matrixStats_1.3.0 base64enc_0.1-3 vctrs_0.6.5 jsonlite_1.8.8
[49] hms_1.1.3 rapportools_1.1 bit64_4.0.5 systemfonts_1.1.0
[53] magick_2.8.3 glue_1.7.0 codetools_0.2-20 stringi_1.8.4
[57] gtable_0.3.5 tables_0.9.25 lmtest_0.9-40 munsell_0.5.1
[61] pillar_1.9.0 htmltools_0.5.8.1 R6_2.5.1 tcltk_4.4.0
[65] textshaping_0.4.0 vroom_1.6.5 evaluate_0.23 lattice_0.22-6
[69] markdown_1.12 backports_1.5.0 pryr_0.1.6 Rcpp_1.0.12
[73] checkmate_2.3.1 xfun_0.44 zoo_1.8-12 pkgconfig_2.0.3