シラバス
概要
- 科目名:方法論特殊講義III(プログラム講義計量政治学方法論Ⅰ)
- 講師:宋財泫
- 所属:関西大学総合情報学部
- E-mail: songkansai-u.ac.jp
- Homepage: https://www.jaysong.net
- 時間:2024年8月26〜30日 3〜5限目
- 教室:フロンティア館 303教室
授業の内容
本講義は、近年政治学において関心が高まっている「因果推論」を行うための諸手段を理解・習得することを目的とする。最初に、最良の因果推論とも称されるRCT(ランダム化比較試験)を説明し、RCT が不可能な際の手法としてマッチング、回帰不連続デザイン、差分の差などを紹介する。
評価
- 授業貢献度
30%100%- 授業への参加度、質問など
期末レポート 70%期末レポートの内容は初回の授業で紹介する
履修上の注意
統計学に関する基礎知識が必要である。目安は母平均の差の検定、および線形回帰分析が理解でき、統計ソフトウェアで実行・解釈が可能なレベルである。
本講義における共通言語はRである。Rの使い方に関しては既にインターネット上に膨大な情報がある。宋と矢内勇生(高知工科大学)が執筆中の以下の資料を参照することも1つの選択肢である。
- 宋財泫・矢内勇生. 『私たちの R: ベストプラクティスの探究』
- Rの導入方法は講義中、宋が解説する。
統計学および定量的分析、Rの使い方については以下の書籍を講義開始日までに読んでおくことを強く推奨する。
- 浅野正彦・矢内勇生. 2019『Rによる計量政治学』オーム社.
R スクリプト作成の際、{tidyverse} というパッケージ群を積極的に活用する。この パッケージには {dplyr}、{ggplot2} などのパッケージが含まれている。各パッケージの 使い方を習得するには以下の教材を推奨する。
- Wickham, Hadley and Grolemund, Garrett. 2017. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, O’Reilly. (邦訳あり/原著はインターネットから無料で閲覧可)
- 松村優哉・湯谷啓明・紀ノ定保礼・前田和寛 . 2021. 『改訂2版 Rユーザのための RStudio[実践] 入門—tidyverseによるモダンな分析フローの世界—』技術評論社.
教科書・参考書
以下は本書の内容を(一部)カバーする書籍の目録である。必ずしも購入する必要はないが、予習・復習において適宜参照することを推奨する。
- 因果推論の理論と実例
- 【AP 2008】 Angrist, Joahua D., and Jorn-steffen Pischke. 2008. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press.
- 『「ほとんど無害」な計量経済学―応用経済学のための実証分析ガイド』 (翻訳はかなり有害)
- 【AP 2014】 Angrist, Joahua D., and Jorn-steffen Pischke. 2014. Mastering ’Metrics: The Path from Cause to Effect. Princeton University Press.
- 【森田 2014】 森田果. 2014.『実証分析入門—データから「因果関係」を読み解く作法』日本評論社.
- 【中室・津川 2017】 中室牧子・津川友介. 2017.『「原因と結果」の経済学—データから真実を見抜く思考法』ダイヤモンド社.
- 【伊藤 2017】 伊藤公一郎. 2017.『データ分析の力—因果関係に迫る思考法』光文社新書.
- 【松林 2021】 松林哲也. 2021.『政治学と因果推論』岩波書店.
- 【AP 2008】 Angrist, Joahua D., and Jorn-steffen Pischke. 2008. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press.
- 理論+R
- 【星野・田中 2016】 星野匡郎・田中久稔. 2016.『Rによる実証分析—回帰分析から因果分析へ—』オーム社.
- 【安井 2020】 安井翔太. 2020. 『効果検証入門—正しい比較のための因果推論/計量経済学の基礎』技術評論社.
- 【Cunningham 2021】 Cunningham, Scott. 2021. Causal Inference: The Mixtape. Yale University Press.
- 【高橋 2022】 高橋将宜. 2022. 『統計的因果推論の理論と実装』共立出版.
本講義との関係
Intro/RCT | Matching | Diff-in-Diff | RDD | IV | |
---|---|---|---|---|---|
AP 2008 | Ch.2 | Ch.3 | Ch.5 | Ch.6 | Ch.4 |
AP 2014 | Ch.1-2 | Ch.5 | Ch.4 | Ch.3 | |
森田 2014 | 第16章 | 第18章 | 第22章 | 第20章 | |
星野・田中 2016 | 第1-8章 | 第9章 | 第10章 | 第11章 | |
中室・津川 2017 | 第1-3章 | 第7-8章 | 第4章 | 第6章 | 第5章 |
伊藤 2017 | 第1-2章 | 第5章 | 第3章 | ||
安井 2020 | 第1章 | 第2-3章 | 第4章 | 第5章 | |
Cunningham 2021 | Ch.2-4 | Ch.5 | Ch.8-10 | Ch.6 | Ch.7 |
松林 2021 | 第1-5章 | 第8章 | 第6章 | 第7章 | |
高橋 2022 | 第1-3章 | 第4-12章 | 第15-18章 | 第13-14章 |
講義内容・参考文献
因果推論の考え方
- Textbook
- Imbens, Guido W., and Donald B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences. Cambridge University Press. (Ch. 1 and 2)
- 『インベンス・ルービン 統計的因果推論(上)』(有斐閣)の第1・2章
- Hernan, Miguel A., James M. Robins. 2020. Causal Inference. Chapman & Hall/CRC. (Ch. 1)
- Imbens, Guido W., and Donald B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences. Cambridge University Press. (Ch. 1 and 2)
- Article
- Holland, Paul W. 1986. “Statistics and Causal Inference.” Journal of the American Statistical Association, 81: 945–960.
- Marini, Margaret Mooney, and Burton Singer. 1988. “Causality in the Social Sciences.” Sociological Methodology, 18: 347–409.
- Rubin, Donald B. 2005. “Causal Inference Using Potential Outcomes: Design, Modeling, Decisions.” Journal of the American Statistical Association, 100: 322–331.
- Brady, Henry E. 2008. “Causation and Explanation in Social Science.” In Janet M. BoxSteffensmeier, Henry E. Brady, and David Collier, eds. The Oxford Handbook of Political Methodology. Oxford University Press. (Ch. 10)
- Keele, Luke. 2015. “The Statistics of Causal Inference: A View from Political Methodology.” Political Analysis, 23: 313–335.
- Monograph
- 岩波データサイエンス刊行委員会. 2016.『岩波データサイエンス Vol.3』岩波書店.
RCT(Lab Session)
履修者全員がRの操作に慣れていると判断した場合、Lab Sessionは省略し、最終日に操作変数法の講義を行う。
- Textbook (RCT)
- Imbens, Guido W., and Donald B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences. Cambridge University Press. (Part II)
- 『インベンス・ルービン 統計的因果推論(上)』(有斐閣)の第2部
- Hernan, Miguel A., James M. Robins. 2020. Causal Inference. Chapman & Hall/CRC. (Ch. 2)
- Imbens, Guido W., and Donald B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences. Cambridge University Press. (Part II)
- Textbook (R Language)
- 飯田健. 2013.『計量政治学』共立出版
- Lander, Jared P.. 2017. R for Everyone: Advanced Analytics and Graphics (2nd Edition). Addison-Wesley Professional.
- Imai, Kosuke. 2017. Quantitative Social Science: An Introduction. Princeton University Press.
- Wickham, Hadley, and Garrett Grolemund. 2017. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media.
- 高橋康介. 2018.『再現可能性のすゝめ―RStudioによるデータ解析とレポート作成』共立出版
- 松村優哉・湯谷啓明・紀ノ定保礼・前田和寛. 2018.『RユーザのためのRStudio[実践]入門―tidyverseによるモダンな分析フローの世界―』技術評論社.
- Article
- Bertrand, Marianne, and Sendhil Mullainathan. 2004. “Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination.” American Economic Review, 94 (4): 991-1013.
- Druckman, James N., Donald P. Green, James H. Kuklinski, and Arthur Lupia. 2006. “The Growth and Development of Experimental Research in Political Science.” American Political Science Review, 100(4): 627-635.
- Tomz, Michael. 2007. “Domestic Audience Costs in International Relations: An Experimental Approach.” International Organization, 61 (4): 821-840.
- Gerber, Alan S., Donald P. Green, and Christopher W. Larimer. 2008. “Social Pressure and Voter Turnout: Evidence from a Large-Scale Field Experiment.” American Political Science Review, 102 (1): 33-48.
- Imai, Kosuke, Gary King, and Elizabeth A. Stuart. 2008. “Misunderstandings between Experimentalists and Observationalists about Causal Inference.” Journal of the Royal Statistical Society. Series A, 171(2): 481-502.
- de Rooji, Eline A., Donald P. Green, and Alan S. Gerber. 2009. “Field Experiments on Political Behavior and Collective Action.” Annual Review of Political Science. 12: 389-395.
- Palfrey, Thomas R. 2009. “Laboratory Experiments in Political Economy.” Annual Review of Political Science, 12: 379-388.}
- 谷口尚子. 2014. 「政治学における実験研究」『選挙研究』30 (1): 5-15.
- Monograph
- 河野勝. 2007. 『社会科学の実験アプローチ』勁草書房.
- 肥前洋一. 2016. 『実験政治学』勁草書房.
- Blais, Andre, Jean-Francois Laslier, and Karine Van der Straeten Ed. 2016. Voting Experiments. Springer.
- R Packages for Data Analysis
- {tidyverse}: Easily Install and Load the ‘Tidyverse’.
- {tidyverse}パッケージは{dplyr}、{ggplot2}、{haven}、{magrittr}、{purrr}、{readr}、{stringr}、{tibble}、{tidyr}などを含むパッケージ群である。
- {tidyverse}: Easily Install and Load the ‘Tidyverse’.
マッチングとその応用
- Textbook
- Rosenbaum. Paul R. 2002. Observational Studies, 2nd Ed. Springer.
- 星野崇宏. 2009.『調査観察データの統計科学―因果推論・選択バイアス・データ融合―』岩波書店(第2・3・4章)
- Article
- Rosenbaum, Paul R., and Donald B. Rubin. 1983. “The Central Role of the Propensity Score in Observational Studies for Causal Effects.” Biometrika, 70 (1): 41-55.
- Abadie, Alberto and Javier Gardeazabal. 2003. “The Economic Costs of Conflict: A Case Study of the Basque Country.” American Economic Review. 93(1): 113-132.
- Morgan, Stephen L., and David J. Harding. 2006. “Matching Estimators of Causal Effects: Prospects and Pitfalls in Theory and Practice.” Sociological Methods & Research, 35(1): 3-60.
- Ho, Daniel E., Kosuke Imai, Gary King, and Elizabeth A. Stuart. 2007. “Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference.” Political Analysis, 15: 199-236.
- Sekhon, Jasjeet S. 2008. “The Neyman-Rubin Model of Causal Inference and Estimation via Matching Methods.” In Janet M. Box-Steffensmeier, Henry E. Brady, and David Collier, eds. The Oxford Handbook of Political Methodology, New York: Oxford University Press, Ch.11.
- Stuart, Elizabeth A., and Donald B. Rubin. 2008. “Best Practice in Quasi-Experimental Designs: Matching Methods for Causal Inference.” In Jason W. Osborne, ed. Best Practices in Quantitative Methods, Thousand Oaks: Sage, Ch.11.
- Sekhon, Jasjeet S. 2009. “Opiates for the Matches: Matching Methods for Causal Inference.” Annual Review of Political Science, 12: 487-508.
- Abadie, Alberto,Alexis Diamond, and Jens Hainmueller. 2010. “Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program.” Journal of the American Statistical Association. 105 (490): 493-505.
- Stuart, Elizabeth A. 2010. “Matching Methods for Causal Inference: A Review and a Look Forward.” Statistical Science, 25(1): 1-21.
- Iacus, Stefano M., Gary King, and Giuseppe Porro. 2012. “Causal Inference without Balance Checking: Coarsened Exact Matching.” Political Analysis, 20: 1-24.
- Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2014. “Comparative Politics and the Synthetic Control Method.” American Journal of Political Science. 59 (2): 495-510.
- Brodersen, Kay H., Fabian Gallusser, Jim Koehler, Nicolas Remy, and Steven L. Scott. 2015. “Inferring causal impact using Bayesian structural time-series models.” Annals of Applied Statistics. 9(1): 247-274.
- 登藤直弥・小林哲郎・稲増一憲. 2016.「ソフトニュースへの接触は政治的関心を高めるか―一般化傾向スコアを用いた因果推論―」『行動計量学』43 (2): 129-141.
- Samii, Cyrus, Laura Paler, and Sarah Zukerman Daly. 2017. “Retrospective Causal Inference with Machine Learning Ensembles: An Application to Anti-recidivism Policies in Colombia.” Political Analysis, 24 (4): 434-456.
- R Package
- {Matching}: Multivariate and Propensity Score Matching with Balance Optimization
- {MatchIt}: Nonparametric Preprocessing for Parametric Causal Inference
- {WeightIt}: Weighting for Covariate Balance in Observational Studies
- {SuperLearner}: Super Learner Prediction
差分の差分法
- Article
- Card, David, and Alan B. Krueger. 1994. “Minimum Wages and Employment: A Case Study of the Fast Food Industry in New Jersey and Pennsylvania.” American Economic Review, 90 (5): 1397-1420.
- Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. “How Much Should We Trust Differences-In-Differences Estimates?” Quarterly Journal of Economics, 119(1): 249-275.
- Di Tella, Rafael, and Ernesto Schargrodsky. 2004. “Do Police Reduce Crime? Estimates Using the Allocation of Police Forces After a Terrorist Attack.” American Economic Review, 94 (1): 115-133.
- Abadie, Alberto. 2005. “Semiparametric Difference-in-Differences Estimators.” Review of Economic Studies, 72(1): 1-19.
- Lyall, Jason. 2009. “Does Indiscriminate Violence Incite Insurgent Attacks? Evidence from Chechnya.” Journal of Conflict Resolution, 53(3): 331-362.
- Lechner, Michael. 2010. “The Estimation of Causal Effects by Difference-in-Difference Methods.” Working paper.
- Asai, Yukiko, Ryo Kamibayashi, and Shintaro Yamaguchi. 2015. “Childcare availability, household structure, and maternal employment.” Journal of the Japanese and International Economies, 38: 172-192.
- Fouirnaies, Alexander, and Hande Mutlu-Eren. 2015. “English Bacon: Copartisan Bias in Intergovernmental Grant Allocation in England.” Journal of Politics, 77(3): 805–817.
- Xu, Yiqing. 2017. “Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models,” Political Analysis, 25(1): 56-76.
- R Packages
- {estimatr}: Fast Estimators for Design-Based Inference
- {CausalImpact}: Inferring Causal Effects using Bayesian Structural Time-Series Models
- {Synth}: Synthetic Control Group Method for Comparative Case Studies
- {gsynth}: Generalized Synthetic Control Method
回帰不連続デザイン
- Textbook
- Cattaneo, Matias D. 2020. A Practical Introduction to Regression Discontinuity Designs, Cambridge University Press.
- Article
- Thistlethwaite, Donald L., and Donald T. Campbell. 1960. “Regression-discontinuity analysis: An alternative to the ex post facto experiment.” Journal of Educational Psychology, 51(6): 309-317.
- Hahn, Jinyong, Petra Todd, and Wilbert Van der Klaauw. 2001. “Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design.” Econometrica, 69 (1): 201-209.
- Poter, Jack. 2003. “Estimation in the Regression Discontinuity Model.” Working Paper.
- Imbens, Guido W., and Thomas Lemieux. 2008. “Regression Discontinuity Designs: A Guide to Practice.” Journal of Econometrics, 142 (2): 615-635.
- Lee, David S. 2008. “Randomized experiments from non-random selection in U.S. House elections.” Journal of Econometrics, 142 (2): 675-697.
- Justin McCrary. 2008. “Manipulation of the running variable in the regression discontinuity design: A density test.” Journal of Econometrics, 142 (2): 698-714.
- Lee, David S., and Thomas Lemieux. 2010. “Regression Discontinuity Designs in Economics. Journal of Economic Literature, 48 (2): 281-355.
- Lee, David S., and Thomas Lemieux. 2010. “Regression Discontinuity Designs in Economics.” Journal of Economic Literature, 48 (2): 281-355.
- Imbens, Guido, and Karthik Kalyanaraman. 2011. “Optimal Bandwidth Choice for the Regression Discontinuity Estimator.” Review of Economic Studies, 79 (3): 933-959.
- Hall, Andrew B. 2015. “What Happens When Extremists Win Primaries?,” American Political Science Review, 109 (1): 18-42.
- Ariga, Kenichi, Yusaku Horiuchi, Roland Mansilla, and Michio Umeda. 2016. “No sorting, no advantage: Regression discontinuity estimates of incumbency advantage in Japan.” Electoral Studies, 43: 21-31.
- Andrew Gelman and Guido Imbens. 2019. “Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs,” Journal of Business & Economic Statistics, 37(3): 447-456.
- Monograph
- Cattaneo, Matias D., Nicolas Idrobo and Rocio Titiunik. 2018. A Practical Introduction to Regression Discontinuity Designs: Volume I. Cambridge University Press.
- Cattaneo, Matias D., Nicol'as Idrobo and Roc'io Titiunik. 2018. A Practical Introduction to Regression Discontinuity Designs: Volume II. Cambridge University Press.
- R package
- {rdd}: Regression Discontinuity Estimation
- {rddtools}: Toolbox for Regression Discontinuity Design (‘RDD’)
- {rddapp}: Regression Discontinuity Design Application
- {rdrobust}: Robust Data-Driven Statistical Inference in Regression-Discontinuity Designs
- {rdmulti}: Analysis of RD Designs with Multiple Cutoffs or Scores
- {rdpower}: Power Calculations for RD Designs
操作変数法
以下の内容はLab Sessionを行わない場合のみ、解説する。
- Article
- Angrist, Joshua D. and Alan B. Krueger. 2001. “Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments,” Journal of Economic Perspectives, 15 (4): 69-85
- Dunning, Thad. 2008. “Model Specification in Instrumental-Variables Regression.” Political Analysis, 16 (3): 290-302.
- Kern, Holger Lutz and Jens Hainmueller. 2009. “Opium for the Masses: How Foreign Media Can Stabilize Authoritarian Regimes.” Political Analysis, 17 (4): 377-399.
- Allison J. Sovey and Donald P. Green. 2010. “Instrumental Variables Estimation in Political Science: A Readers’ Guide,” American Journal of Political Science, 55(1): 188-200.
- Bollen, Kenneth A. 2012. “Instrumental Variables in Sociology and the Social Sciences,” Annual Review of Sociology, 38:37-72.
- Aronow, Peter M. and Allison Carnegie. 2013. “Beyond LATE: Estimation of the Average Treatment Effect with an Instrumental Variable.” Political Analysis, 21 (4): 492-506.
- R packages